DON'T FOLLOW THE LIGHT

CONVERSION DE ANA - DIG

CONVERSIÓN ANALÓGICO DIGITAL
 

Una vez aclaradas las diferencias básicas entre la tecnología analógica y la digital, veamos ahora cómo se efectúa el proceso de conversión de una tecnología a otra.

Para realizar esa tarea, el conversor ADC (Analog-to-Digital Converter - Conversor Analógico Digital) tiene que efectuar los siguientes procesos:

 

1.- Muestreo de la señal analógica.
2.- Cuantización de la propia señal
3.- Codificación del resultado de la cuantización, en código binario.


 

Muestreo de la señal analógica


 

 


Representación gráfica de medio ciclo positivo (+) , correspondiente a una señal eléctrica analógica de<sonido, con sus correspondientes armónicos. Como se podrá observar, los valores de variación de la<tensión o voltaje en esta sinusoide pueden variar en una escala que va de “0” a “7” volt.



Para convertir una señal analógica en digital, el primer paso consiste en realizar un muestreo (sampling)de ésta, o lo que es igual, tomar diferentes muestras de tensiones o voltajes en diferentes puntos de la onda senoidal. La frecuencia a la que se realiza el muestreo se denomina razón, tasa o también frecuencia de muestreo y se mide en kilohertz (kHz). En el caso de una grabación digital de audio, a mayor cantidad de muestras tomadas, mayor calidad y fidelidad tendrá la señal digital resultante.

Durante el proceso de muestreo se asignan valores numéricos equivalentes a la tensión o voltaje existente en diferentes puntos de la sinusoide, con la finalidad de realizar a continuación el proceso de cuantización.

Las tasas o frecuencias de muestreo más utilizadas para audio digital son las siguientes:
 

  • 24 000 muestras por segundo (24 kHz)

  • 30 000 muestras por segundo (30 kHz)

  • 44 100 muestras por segundo (44,1 kHz) (Calidad de CD)

  • 48 000 muestras por segundo (48 kHz)
     

 

 


Para realizar el muestreo (sampling) de una señal eléctrica analógica y convertirla después en digital, el<primer paso consiste en tomar valores discretos de tensión o voltaje a intervalos regulares en diferentes<puntos de la onda senoidal.


Por tanto, una señal cuyo muestreo se realice a 24 kHz, tendrá menos calidad y fidelidad que otra realizada a 48 kHz. Sin embargo, mientras mayor sea el número de muestras tomadas, mayor será también el ancho de banda necesario para transmitir una señal digital, requiriendo también un espacio mucho mayor para almacenarla en un CD o un DVD.

En la grabación de CDs de música, los estudios de sonido utilizan un estándar de muestreo de 44,1 kHz a 16 bits. Esos son los dos parámetros requeridos para que una grabación digital cualquiera posea lo que se conoce como “calidad de CD”.

 

 

 

CONDICIÓN DE NYQUIST 

El ingeniero sueco Harry Nyquist formuló el siguiente teorema para obtener una grabación digital de calidad:

“La frecuencia de muestreo mínima requerida para realizar una grabación digital de calidad, debe ser igual al doble de la frecuencia de audio de la señal analógica que se pretenda digitalizar y grabar”.

Este teorema recibe también el nombre de “Condición de Nyquist”.

Es decir, que la tasa de muestreo se debe realizar, al menos, al doble de la frecuencia de los sonidos más agudos que puede captar el oído humano que son 20 mil hertz por segundo (20 kHz). Por ese motivo se escogió la frecuencia de 44,1 kHz como tasa de muestreo para obtener “calidad de CD”, pues al ser un poco más del doble de 20 kHz, incluye las frecuencias más altas que el sentido del oído puede captar.

 

 

 

 



Cuantización de la señal analógica


Una vez realizado el muestreo, el siguiente paso es la cuantización (quantization) de la señal analógica. Para esta parte del proceso los valores continuos de la sinusoide se convierten en series de valores numéricos decimales discretos correspondientes a los diferentes niveles o variaciones de voltajes que contiene la señal analógica original.

Por tanto, la cuantización representa el componente de muestreo de las variaciones de valores de tensiones o voltajes tomados en diferentes puntos de la onda sinusoidal, que permite medirlos y asignarles sus correspondientes valores en el sistema numérico decimal, antes de convertir esos valores en sistema numérico binario.
 

 

 


Proceso de cuantización (quantization) de la señal eléctrica analógica para su conversión en señal digital.

 

 



Codificación de la señal en código binario


Después de realizada la cuantización, los valores de las tomas de voltajes se representan numéricamente por medio de códigos y estándares previamente establecidos. Lo más común es codificar la señal digital en código numérico binario.
 

 

 


La codificación permite asignarle valores numéricos binarios equivalentes a los valores de tensiones o<voltajes que conforman la señal eléctrica analógica original.


En este ejemplo gráfico de codificación, es posible observar cómo se ha obtenido una señal digital y el código binario correspondiente a los niveles de voltaje que posee la señal analógica.

La siguiente tabla muestra los valores numéricos del 0 al 7, pertenecientes al sistema decimal y sus equivalentes en código numérico binario. En esta tabla se puede observar que utilizando sólo tres bits por cada número en código binario, se pueden representar ocho niveles o estados de cuantización.

 

 Valores en volt en Sistema Decimal

  Conversión a Código Binario

  0 

000

1

001

2

010

3

011

4

100

5

101

6

110

7

111


Y en esta otra tabla se puede ver la sustitución que se ha hecho de los valores numéricos correspondientes a los voltajes de las muestras tomadas de la señal analógica utilizada como ejemplo y su correspondiente conversión a valores en código binario.

 

    Valor de los voltajes de la señal  
          analógica del ejemplo 

Conversión a Código Binario

        0        

000

2

010

3

011

4

100

6

110

7

111

7

111

5

101

4

100

3

011

0

000


Convertidores A/D

El convertidor A/D es el único elemento totalmente indispensable en un sistema de adquisición de datos. Además él por si sólo puede constituir un SAD. Generalmente suele ser el más caro de todos los elementos que constituyen el SAD aunque, por supuesto, su precio depende de la calidad de las prestaciones que se le pidan. Estas serán: la exactitud, que depende de los errores que se produzcan y de la resolución (número de bits), y la velocidad.

A nivel de elemento de circuito, el A/D se caracteriza por una entrada analógica, una salida digital y varias señales de control y alimentación.

Monografias.com

Las señales de control más importantes y características son: SC (Start Conversión) y EOC

(End Of Conversión). La primera es una entrada que requiere el circuito para que comience la conversión que durará un tiempo que a veces es conocido de antemano y otras veces no. La señal EOC es la que indica al circuito o microprocesador donde están entrando las señales digitales, cuándo ha terminado la conversión. Es por tanto una señal de salida.

El elemento de salida del A/D es un latch o registro donde se almacena el dato. Este permanecerá almacenado o cambiará controlado por unas entradas de Enable y Chip Select del latch.

El funcionamiento de un A/D es muy simple: se inicia la conversión cuando la señal SC pasa a 1. El A/D comienza la conversión y avisa cuándo termina mediante una bajada a 0 del EOC.

Generalmente esta señal EOC está directamente conectada a una señal de interrupción del microprocesador lo que permite "desatenderla". Si no es así, habrá que utilizar una técnica para la lectura continua de la línea EOC que permita detectar el momento de la bajada.

La forma más sencilla de conectar el A/D al circuito que va a recoger los datos es cuando éste es un microcomputador que consta de puertos de entrada/salida.

Monografias.com

Una de las líneas de un puerto es configurado como salida y sirve para la señal SC. Otra es configurada como entrada y recibe la señal EOC. Las líneas de salida de los datos son conectadas a otro puerto. Pero dependiendo del número de salidas que tenga el A/D, así tendrá que ser el puerto de entrada. Puede ocurrir que tenga 8 salidas y entonces entrarán en un puerto de 8 líneas del microcomputador. Pero si por ejemplo tiene 12 líneas habrá varias formas en que se podrá hacer la conexión que no está normalizada y depende por tanto del fabricante.

Generalmente el fabricante dividirá la palabra de salida del A/D en dos partes: una de mayor peso (HB) y otra de menor (LB). Pero el número de bits que entre en cada parte no es fijo.

Así puede ser que el HB contenga los bits 8 a 11 y el LB los 0 a 7. Pero también es posible que la división sea de 4 a 11 en HB y de 0 a 3 en LB. Además dentro del byte que no esté completo, los datos pueden estar colocados en la parte alta o en la baja etc. Además puede ocurrir que un mismo A/D acceda a más de un microcomputador con buses de diferente tamaño. En ese caso, se debe poder elegir la forma en que van a salir los datos dependiendo de a dónde vayan. Toda esta información la da el fabricante y la manera de controlar los diferentes comportamientos y ubicaciones de los datos es utilizando líneas de otro puerto como líneas de control.

Si no se cuenta con un microcomputador la conexión y el control habrá que hacerlo utilizando decodificadores de dirección, buffers etc. conjuntamente con un microprocesador.

Tipos de convertidores A/D.

Los convertidores A/D se pueden clasificar básicamente en los siguientes tipos:

Monografias.com

Aunque no son los únicos, sí son los más típicos. Los que más interés tienen por su aplicación son los marcados con asterisco (*). Dentro de cada grupo, la arquitectura interna es muy similar.

Escalera.

Consta de un D/A en el que la entrada es un contador. La entrada RST al contador es la de inicio de cuenta. El amplificador es un circuito comparador. Su funcionamiento no es el de un amplificador lineal, sino que está fabricado para comparar V+ con V- como lo hace un amplificador operacional, llevando al amplificador a saturación positiva o negativa. Tiene con él dos diferencias: en primer lugar es más rápido y además trabaja en niveles compatibles con TTL. Es decir su forma de trabajo es:

Monografias.com

Vamos a identificar en él A/D en escalera dado los elementos dados como básicos en un A/D.

En primer lugar tiene una entrada analógica. La salida, digital, se toma a la salida del contador. La señal de control SC es RST que pone a cero el contador y la señal EOC es la EC que da un flanco descendente cuando termina la conversión.

El funcionamiento del A/D es el siguiente: Con la señal RST el contador se pone a 0 con lo que la entrada del D/A tendrá ese valor y así mismo la salida.

Por tanto V-=0. Pero V+=VIN debe ser mayor que cero, por lo que VIN>V- y el amplificador se satura positivamente por lo que la salida Vo=5V=EOC. En esta situación se habilita la puerta AND permitiendo el paso de un pulso de reloj que obliga al contador a contar. En su salida tendrá un LSB que saldrá en analógico a la salida del D/A. Si su valor es menor que VIN la salida del amplificador seguirá siendo 5V, por lo que el contador contará otra vez. Y así sucesivamente hasta que V->VIN. En ese momento la salida del amplificador pasará a valer 0V inhabilitando la puerta. Por tanto, el contador recorrerá, en cada caso, todos los estados hasta que la salida del D/A supere la tensión de entrada. Dada la gran precisión del amplificador nunca se dará la situación de que sus dos entradas sean iguales. Siempre estará saturado.

Este A/D tiene una pega y es el tiempo que tarda el circuito en hacer la conversión. Este tiempo depende del valor de VIN ya que en cada caso habrá que recorrer todos los estados desde 0. Si VIN es alto, habrá que recorrer muchos estados. El tiempo máximo cuando el contador recorre todos los estados es:

Monografias.com

Donde n es el número de bits del contador y fCLK la frecuencia del reloj. Por tanto tarda más cuanta más resolución tenga el contador y menor sea la frecuencia del reloj.

Aproximaciones sucesivas.

En este circuito, se sustituye el contador por un registro de aproximaciones sucesivas (RAS).

La idea de este circuito es lograr llegar al valor final, sin tener que recorrer todos los anteriores. Para ello, se pretende conocer en cada ciclo de reloj el valor de un bit. En primer lugar el valor del bit más significativo Dn-1, después el Dn-2 y así sucesivamente.

El método consiste en colocar en primer lugar en el registro el valor LHH...H. Si la VIN es superior a la salida del D/A en ese caso, el amplificador lo detectará dando saturación positiva y un 1 en salida. Por tanto para alcanzar el valor deseado tendré que incrementar el bit de mayor peso, es decir darle el valor H. Si por el contrario, el amplificador hubiese dado a la salida un 0, el bit estaría en su valor correcto. El método consiste en colocar en primer lugar en el registro el valor LHH...H. Si la VIN es superior a la salida del D/A en ese caso, el amplificador lo detectará dando saturación positiva y un 1 en salida. Por tanto para alcanzar el valor deseado tendré que incrementar el bit de mayor peso, es decir darle el valor H. Si por el contrario, el amplificador hubiese dado a la salida un 0, el bit estaría en su valor correcto.

Monografias.com

Una vez conocido el valor de Dn-1 introducimos como dato digital el siguiente: Dn-1 LHH...H y comparamos la salida del D/A con VIN como se hizo en el caso anterior. De esta manera conseguimos saber también el valor de Dn-2. Repitiendo este proceso en el tiempo conseguimos obtener el valor buscado.

La principal ventaja que presenta este dispositivo frente a otros es que se necesita un ciclo de reloj por cada bit. Por ello, para 12 bits sólo son necesarios 12 ciclos de reloj. La base de este A/D es un R.A.S. que esté diseñado a partir de un registro de desplazamiento cuyo funcionamiento sea el siguiente:

¡Error!

Marcador

no definido.

Monografias.com

tn representa el ciclo de reloj. Como se observa el dato está disponible en el ciclo de reloj n+1, uno más que el número de bits del dato de salida. Si VIN > V0DAC entonces la saturación del comparador será positiva y a la salida de éste tendremos V0 = 5V (un 1 lógico para TTL).

Si VIN < V0DAC entonces la saturación será negativa y v0 = 0V (un 0 lógico en TTL). Con esto vemos que la salida del comparador, cuando evaluamos un bit, coincide con el valor correcto de éste. Por tanto, la salida del comparador debe utilizarse como entrada del registro de desplazamiento antes indicado.

Los tiempos de conversión son del orden de los µs o de los centenares de ns ya que sólo necesitamos, para 12 bits, 13 ciclos de reloj y podemos utilizar frecuencias altas (de hasta MHz). Los problemas que pueden presentar este tipo de convertidores son del tipo de problemas de deriva, de OFFSET, de Vref, etc., que hacen que este tipo de convertidores no sean adecuados para un número de bits superiores a los 14. Esto se debe a que el propio convertidor, y debido a los problemas ya comentados, posee errores superiores a la resolución que buscamos al aumentar el número de bits. Este tipo de convertidores es el utilizado más comúnmente, salvo que deseemos realizar pocas conversiones por segundo (5, 10, 30, etc.). Para conversiones de 1000, 2000 por segundo es casi de uso obligatorio.

Convertidores de integración

De simple rampa:

Monografias.com

Se hace la conversión en un sólo paso. Disponemos de un integrador y la tensión VIN debe ser positiva (unipolar). Cuando SC=1, entonces:

1. Se cierra el interruptor cortocircuitando el condensador C, de manera que se descarga a través de la RON del interruptor.

2. Se resetea el contador colocándolo a cero.

3. La unidad de control permite que la señal de reloj llegue al contador. Para ello coloca a 1 la tercera entrada de la puerta AND.

Tras estos pasos el integrador comienza en cero y como VIN es positivo, la salida del amplificador estará en saturación positiva. Con ello, a la salida del comparador tendremos un 1 lógico, lo cual permitirá que la señal de reloj CLK alcance al contador. A medida que se carga el condensador aumenta el valor de salida del integrador VI. Esto continua igual hasta que en un momento determinado VIN es mayor o igual que VI lo que hace que el comparador se sature negativamente, y por tanto, VC = 0. En ese momento el resultado de la puerta NAND es un uno lógico, con lo cual impedimos que la señal CLK llegue al contador, terminando así el proceso de conversión.

Doble rampa:

El circuito es el de la figura

Monografias.com

El sistema funciona en dos partes en el tiempo proporcionando dos rampas distintas.

1. La entrada es la señal analógica VA que se desea digitalizar. Dura un tiempo fijo tF.

2. Tiene como entrada -VREF y el tiempo es variable. Se supone VA>0.

Durante el primer período de tiempo la salida será: V1= t .V A /RC

Ya que el condensador está descargado al comenzar la conversión mediante el interruptor que tiene en paralelo.

En el segundo tramo, al conmutar la entrada ésta se hace negativa lo que implica una pendiente positiva. Sin considerar las condiciones iniciales la salida sería:

Monografias.com

Se puede encontrar una expresión de esta ecuación en la que, eliminando el tiempo, se introduzcan los pulsos de reloj. Si f es la frecuencia de reloj, su período será la inversa de la frecuencia y se puede escribir

Monografias.com

nx depende de VREF externa y de nF que es el número fijo de pulsos de reloj que se puede fijar sin problema. La única condición a pedir al sistema es que el reloj debe tener una frecuencia constante durante el tiempo de conversión.

Los convertidores de este tipo son lentos: unas 30-40 conversiones por segundo, es decir de 30-40 mseg lo cual permite que el oscilador se muy sencillo del tipo RC.

Este convertidor es útil ya que además de tener una dependencia baja de la salida con la entrada, permite conseguir alta resolución (24 bits o algo más). Sin embargo esta alta resolución puede presentar problemas de deriva o offset que se resuelva mediante una tercera rampa (7109). Su idea básica es medir la deriva en la primera fase poniendo la entrada a cero y añadiendo esta deriva mediante un sumador en el resto del circuito. Se añade, por tanto, un tiempo previo al primero que es un ajuste de cero del A/D.

Por otra parte, si VA<0 se necesitará que VREF sea positiva. El 7109 permite ambos signos en la entrada mediante un selector del signo de la tensión de referencia dependiendo del de la entrada.

Otra ventaja de este circuito es el bajo consumo por estar fabricado en tecnología CMOS.

Son también bastante inmunes al ruido sobre todo al de alta frecuencia. Si, por ejemplo, se quiere convertir una señal continua, si se observa ésta detenidamente se verá que no tiene un único valor sino que oscila dentro de una banda de valores (tiene ruido).

Con un convertidor de integración la conversión no es instantánea (del orden de 30 c/s), por ello al integrar en el tiempo está promediando el valor de la señal. Si el período de conversión es un múltiplo de la señal de ruido, conseguiremos que el valor obtenido coincida con el valor de la señal constante y por tanto sin ruido, ya que la contribución de los semiperiodos positivos del ruido es la misma que la de los semiperiodos negativos.

Tensión-Frecuencia

En este tipo de convertidor se realiza una conversión de la señal analógica de entrada a frecuencia, midiéndose después el valor de la misma (antes la convertíamos en tiempo). Este circuito, por tanto, tendrá dos partes bien distintas: la primera convierte la señal a frecuencia y la segunda mide esa frecuencia.

Monografias.com

Conclusiones

Luego de haber concluido el trabajo a tratar obtenemos las siguientes conclusiones: que el convertidor digital-analógico es un circuito que tiene una entrada digital y da a la salida una tensión proporcional a la palabra digital.

Mientras que el convertidor analógico-digital es un Circuito tiene una entrada analógica y da a la salida una palabra digital proporcional a la entrada analógica.

 



 
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis